iSTAR for scientists


scientistsThe changes in flow of glaciers draining ice sheets is so poorly understood that in their 2007 report, the Intergovernmental Panel on Climate Change (IPCC) believed it was the least well understood, and potentially the largest, contribution to sea-level rise in the coming century.

iSTAR scientists will be working together to engage with the scientific community on sea level projection to make sure their results are put to best use. Scientific publications will contribute to sea level estimates in the 6th Intergovernmental Panel on Climate Change report, the main document used by policy makers.

Our work will inform glaciologists studying complex procedures, assist oceanographers to understand sea level rise and how ice melt can contribute to this.

Enthusing the next generation of researchers is an important part of this science programme.  A number of initiatives for early career scientists, such as a workshop at the University of East Anglia, are planned.

Our science team will test and develop techniques that will be useful for the wider scientific community to fully exploit data from this and future missions.

Regular updates for the sea level rise community will be posted on this website.

iSTAR publications

In press

Lenaerts, J. T. M., S. R. M. Ligtenberg, B. Medley, W. J. Van de Berg, H. Konrad, J. P. Nicolas, J. M. Van Wessem, L. D. Trusel, R. Mulvaney, R. J. Tuckwell, A. E. Hogg, and E. R. Thomas (2017), Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling, Annals of Glaciology, in press, doi:10.1017/aog.2017.42.

Loose, B., A. C. Naveira Garabato, P. Schlosser, W. J. Jenkins, D. G. Vaughan, and K. J. Heywood (2018), Evidence of an active volcanic heat source beneath Pine Island Glacier, Nature Communications, in press.

Mallett, H. K. W., L. Boehme, M. Fedak, K. J. Heywood, D. P. Stevens, and F. Roquet (2018). Variation in the distribution and properties of Circumpolar Deep Water in the eastern Amundsen Sea, on seasonal simescales, using seal-borne tags. Geophysical Research Letters, in press, doi:10.1029/2018GL077430.


Davies, D., R. G. Bingham, E. C. King, A. M. Smith, A. M. Brisbourne, M. Spagnolo, A. G. C. Graham, A. E. Hogg, and D. G. Vaughan (2018), How dynamic are ice-stream beds?, The Cryosphere, 12(5), 1615-1628, doi:10.5194/tc-12-1615-2018.

Konrad, H., A. Shepherd, L. Gilbert, A. E. Hogg, M. McMillan, A. Muir, and T. Slater (2018), Net retreat of Antarctic glacier grounding lines, Nature Geoscience, 11(4), 258-262, doi:10.1038/s41561-018-0082-z.

Kyrke-Smith, T. M., G. H. Gudmundsson, and P. E. Farrell (2018), Relevance of Detail in Basal Topography for Basal Slipperiness Inversions: A Case Study on Pine Island Glacier, Antarctica, Frontiers in Earth Science, 6(33), doi:10.3389/feart.2018.00033.

Nias, I. J., S. L. Cornford, and A. J. Payne (2018), New Mass‐Conserving Bedrock Topography for Pine Island Glacier Impacts Simulated Decadal Rates of Mass Loss, Geophysical Research Letters, 45(7), 3173-3181, doi:10.1002/2017GL076493.

Slater, T., A. Shepherd, M. McMillan, A. Muir, L. Gilbert, A. E. Hogg, H. Konrad, and T. Parrinello (2018), A new digital elevation model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, 12(4), 1551-1562, doi:10.5194/tc-12-1551-2018.


Biddle, L. C., K. J. Heywood, J. Kaiser, and A. Jenkins (2017), Glacial Meltwater Identification in the Amundsen Sea, Journal of Physical Oceanography, 47(4), 933-954, doi:10.1175/JPO-D-16-0221.1.

Bingham, R. G., D. G. Vaughan, E. C. King, D. Davies, S. L. Cornford, A. M. Smith, R. J. Arthern, A. M. Brisbourne, J. De Rydt, A. G. C. Graham, M. Spagnolo, O. J. Marsh, and D. E. Shean (2017), Diverse landscapes beneath Pine Island Glacier influence ice flow, Nature Communications, 8(1), 1618, doi:10.1038/s41467-017-01597-y.

Brisbourne, A. M., A. M. Smith, D. G. Vaughan, E. C. King, D. Davies, R. G. Bingham, E. C. Smith, I. Nias, and S. H. R. Rosier (2017), Bed conditions of Pine Island Glacier, West Antarctica, Journal of Geophysical Research: Earth Surface, 122(1), 419-433, doi:10.1002/2016JF004033.

Davies, D., R. G. Bingham, A. G. C. Graham, M. Spagnolo, P. Dutrieux, D. G. Vaughan, A. Jenkins, and F. O. Nitsche (2017), High-resolution sub-ice-shelf seafloor records of twentieth century ungrounding and retreat of Pine Island Glacier, West Antarctica, Journal of Geophysical Research: Earth Surface, 122(9), 1698-1714, doi:10.1002/2017JF004311.

Kimura, S., A. Jenkins, H. Regan, P. R. Holland, K. M. Assmann, D. Whitt, M. Van Wessem, W. J. van de Berg, C. H. Reijmer, and P. Dutrieux (2017), Oceanographic Controls on the Variability of Ice-Shelf Basal Melting and Circulation of Glacial Meltwater in the Amundsen Sea Embayment, Antarctica, Journal of Geophysical Research: Oceans, 122(12), 10131-10155, doi:10.1002/2017JC012926.

Konrad, H., L. Gilbert, S. L. Cornford, A. Payne, A. Hogg, A. Muir, and A. Shepherd (2017), Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica, Geophysical Research Letters, 44(2), 910-918, doi:10.1002/2016GL070733.

Kyrke-Smith, T. M., G. H. Gudmundsson, and P. E. Farrell (2017), Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?, Journal of Geophysical Research: Earth Surface, 122(11), 2269-2282, doi:10.1002/2017JF004373.

Morris, E. M., R. Mulvaney, R. J. Arthern, D. Davies, R. J. Gurney, P. Lambert, J. De Rydt, A. M. Smith, R. J. Tuckwell, and M. Winstrup (2017), Snow Densification and Recent Accumulation Along the iSTAR Traverse, Pine Island Glacier, Antarctica, Journal of Geophysical Research: Earth Surface, 122(12), 2284–2301, doi:10.1002/2017JF004357.

Naveira Garabato, A. C., A. Forryan, P. Dutrieux, L. Brannigan, L. C. Biddle, K. J. Heywood, A. Jenkins, Y. L. Firing, and S. Kimura (2017), Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf, Nature, 542(7640), 219–222, doi:10.1038/nature20825.

Nias, I. J. (2017), Modelling the Amundsen Sea ice streams, West Antarctica, Ph.D. thesis, School of Geographical Sciences, University of Bristol. Not currently available online.

Shepherd, A. and S. Nowicki (2017), Improvements in ice-sheet sea-level projections, Nature Climate Change, 7(10), 672-674, doi:10.1038/nclimate3400.

Smith, A. M. (2017), Pine Island Glacier and ice sheet stability in West Antarctica, Eos, 98, doi:10.1029/2017EO086471.

Treasure, A. M., et al. (2017), Marine Mammals Exploring the Oceans Pole to Pole: A Review of the MEOP Consortium, Oceanography, 30(2), 132-138, doi:10.5670/oceanog.2017.234.

Verezemskaya, P., N. Tilinina, S. Gulev, I. A. Renfrew, and M. Lazzara (2017), Southern Ocean mesocyclones and polar lows from manually tracked satellite mosaics, Geophysical Research Letters, 44(15), 7985–7993, doi:10.1002/2017GL074053.

Webber, B. G. M., K. J. Heywood, D. P. Stevens, P. Dutrieux, E. P. Abrahamsen, A. Jenkins, S. S. Jacobs, H. K. Ha, S. H. Lee, and T. W. Kim (2017), Mechanisms driving variability in the ocean forcing of Pine Island Glacier, Nature Communications, 8, 14507, doi:10.1038/ncomms14507.


Biddle, L. (2016), Identifying Glacial Meltwater in the Amundsen Sea, Ph.D. thesis, School of Environmental Sciences, University of East Anglia.

Christianson, K., M. Bushuk, P. Dutrieux, B. R. Parizek, I. R. Joughin, R. B. Alley, D. E. Shean, E. P. Abrahamsen, S. Anandakrishnan, K. J. Heywood, T.-W. Kim, S. H. Lee, K. Nicholls, T. Stanton, M. Truffer, B. G. M. Webber, A. Jenkins, S. Jacobs, R. Bindschadler, and D. M. Holland (2016), Sensitivity of Pine Island Glacier to observed ocean forcing, Geophysical Research Letters, 43(20), 10817-10825, doi:10.1002/2016GL070500.

Cornford, S. L., D. F. Martin, V. Lee, A. J. Payne, and E. G. Ng (2016), Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics, Annals of Glaciology, 57(73), 1-9, doi:10.1017/aog.2016.13.

Heywood, K. J., L. C. Biddle, L. Boehme, P. Dutrieux, M. Fedak, A. Jenkins, R. W. Jones, J. Kaiser, H. Mallett, A. C. Naveira Garabato, I. A. Renfrew, D. P. Stevens, and B. G. M. Webber (2016), Between the devil and the deep blue sea: The role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves, Oceanography, 29(4), 118-129, doi:10.5670/oceanog.2016.104.

Jenkins, A., P. Dutrieux, S. Jacobs, E. J. Steig, G. H. Gudmundsson, J. Smith, and K. J. Heywood (2016), Decadal ocean forcing and Antarctic Ice Sheet response: Lessons from the Amundsen Sea, Oceanography, 29(4), 106-117, doi:10.5670/oceanog.2016.103.

Jones, R. W., I. A. Renfrew, A. Orr, B. G. M. Webber, D. M. Holland, and M. A. Lazzara (2016), Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica, Journal of Geophysical Research: Atmospheres, 121(11), 6240-6257, doi:10.1002/2015JD024680.

Kimura, S., A. Jenkins, P. Dutrieux, A. Forryan, A. C. Naveira Garabato, and Y. Firing (2016), Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica, Journal of Geophysical Research: Oceans, 121(12), 8496-8510, doi:10.1002/2016JC012149.

Nias, I. J., S. L. Cornford, and A. J. Payne (2016), Contrasting the modelled sensitivity of the Amundsen Sea Embayment ice streams, Journal of Glaciology, 62(233), 552-562, doi:10.1017/jog.2016.40.


Bougamont, M., P. Christoffersen, S. F. Price, H. A. Fricker, S. Tulaczyk, and S. P. Carter (2015), Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica, Geophysical Research Letters, 42(20), 8471-8480, doi:10.1002/2015GL065782.

Brennan, P. V., S. Rahman, and L. B. Lok (2015), Range migration compensation in static digital-beamforming-on-receive radar, IET Radar Sonar and Navigation, 9(9), 1323-1329, doi:10.1049/iet-rsn.2014.0355.

Cornford, S. L., et al. (2015), Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate, Cryosphere, 9(4), 1579-1600, doi:10.5194/tc-9-1579-2015.

Nicholls, K. W., H. F. J. Corr, C. L. Stewart, L. B. Lok, P. V. Brennan, and D. G. Vaughan (2015), A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves, Journal of Glaciology, 61(230), 1079-1087, doi:10.3189/2015JoG15J073.


Christoffersen, P., M. Bougamont, S. P. Carter, H. A. Fricker, and S. Tulaczyk (2014), Significant groundwater contribution to Antarctic ice streams hydrologic budget, Geophysical Research Letters, 41(6), 2003-2010, doi:10.1002/2014GL059250.

Dutrieux, P., J. De Rydt, A. Jenkins, P. R. Holland, H. K. Ha, S. H. Lee, E. J. Steig, Q. H. Ding, E. P. Abrahamsen, and M. Schroder (2014a), Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability, Science, 343(6167), 174-178, doi:10.1126/science.1244341.

Dutrieux, P., C. Stewart, A. Jenkins, K. W. Nicholls, H. F. J. Corr, E. Rignot, and K. Steffen (2014b), Basal terraces on melting ice shelves, Geophysical Research Letters, 41(15), 5506-5513, doi:10.1002/2014GL060618.

Kimura, S., P. R. Holland, A. Jenkins, and M. Piggott (2014), The Effect of Meltwater Plumes on the Melting of a Vertical Glacier Face, Journal of Physical Oceanography, 44(12), 3099-3117, doi:10.1175/jpo-d-13-0219.1.